## 3D density plot in R with Plotly

In Bayesian nonparametrics, many models address the problem of *density regression*, including covariate dependent processes. These were settled by the pioneering works by [current ISBA president] MacEachern (1999) who introduced the general class of dependent Dirichlet processes. The literature on dependent processes was developed in numerous models, such as nonparametric regression, time series data, meta-analysis, to cite but a few, and applied to a wealth of fields such as, e.g., epidemiology, bioassay problems, genomics, finance. For references, see for instance the chapter by David Dunson in the Bayesian nonparametrics textbook (edited in 2010 by Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker). With Kerrie Mengersen and Judith Rousseau, we have proposed a dependent model in the same vein for modeling the influence of fuel spills on species diversity (arxiv).

Several densities can be plotted on the same 3D plot thanks to the Plotly R library, *“an interactive, browser-based charting library built on the open source JavaScript graphing library, plotly.js.”*

In our ecological example, the model provides a series of densities on the *Y* axis (in our case, posterior density of species diversity), indexed by some covariate *X* (a pollutant). See file density_plot.txt. The following Plotly R code provides a graph as below. For the interactive version, see the RPubs page here.

library(plotly) mydata = read.csv("density_plot.txt") df = as.data.frame(mydata) plot_ly(df, x = Y, y = X, z = Z, group = X, type = "scatter3d", mode = "lines")

5comments