Statisfaction

momentify R package at BAYSM14

Posted in General, R, Seminar/Conference, Statistics by Julyan Arbel on 20 September 2014

I presented an arxived paper of my postdoc at the big success Young Bayesian Conference in Vienna. The big picture of the talk is simple: there are situations in Bayesian nonparametrics where you don’t know how to sample from the posterior distribution, but you can only compute posterior expectations (so-called marginal methods). So e.g. you cannot provide credible intervals. But sometimes all the moments of the posterior distribution are available as posterior expectations. So morally, you should be able to say more about the posterior distribution than just reporting the posterior mean. To be more specific, we consider a hazard (h) mixture model

\displaystyle h(t)=\int k(t;y)\mu(dy)

where k is a kernel, and the mixing distribution \mu is random and discrete (Bayesian nonparametric approach).

We consider the survival function S which is recovered from the hazard rate h by the transform

\displaystyle S(t)=\exp\Big(-\int_0^t h(s)ds\Big)

and some possibly censored survival data having survival S. Then it turns out that all the posterior moments of the survival curve S(t) evaluated at any time t can be computed.

The nice trick of the paper is to use the representation of a distribution in a [Jacobi polynomial] basis where the coefficients are linear combinations of the moments. So one can sample from [an approximation of] the posterior, and with a posterior sample we can do everything! Including credible intervals.

I’ve wrapped up the few lines of code in an R package called momentify (not on CRAN). With a sequence of moments of a random variable supported on [0,1] as an input, the package does two things:

  • evaluates the approximate density
  • samples from it

A package example for a mixture of beta and 2 to 7 moments gives that result:

mixture

4 Responses

Subscribe to comments with RSS.

  1. Mark said, on 16 November 2019 at 13:31

    Where is momentify now? It has never been on CRAN, but now it is not available even from Dropbox…

  2. […] Another way to simulate this type of distribution is to compute its moments (easy with Mathematica or WolframAlpha) using the formula in section 4, see also here. Then use the Momentify R package, available here.  […]

  3. […] Another way to simulate this type of distribution is to compute its moments (easy with Mathematica or WolframAlpha) using the formula in section 4, see also here. Then use the Momentify R package, available here. […]

  4. […] Another way to simulate this type of distribution is to compute its moments (easy with Mathematica or WolframAlpha) using the formula at the bottom of section 4, see also here. Then use the Momentify R package, available here. […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: